Уравнение затухающих колебаний

    \[ \]

Свободные колебания в реальных условиях не могут продолжаться вечно. Для механических систем всегда имеет место сопротивление среды, вследствие чего энергия движения объекта рассеивается при трении. В электромагнитных контурах колебания затухают за счет сопротивления проводников.

Уравнение затухающих колебаний описывает движение реальных колебательных систем. В дифференциальной форме оно записывается следующим образом:

    \[\frac{\partial^2 x}{\partial t^2} +2\beta \frac{\partial x}{\partial t} +\omega_0^2 x=0\]

Из этого выражения можно получить еще одну каноническую форму:

    \[x=Ae^{-\beta t} \cos (\omega t +\varphi_0 )\]

либо

    \[x=Ae^{-\beta t} \sin (\omega t +\varphi_0 )\]

.

Здесь x и t – координаты пространства и времени, А – первоначальная амплитуда.

    \[\beta\]

– коэффициент затухания, который зависит от сопротивления среды r и массы колеблющегося объекта m:

    \[\beta = \frac{r}{2m} \]

Чем больше сопротивление среды, тем больше энергии рассеивается при вязком трении. И наоборот – чем больше масса (а значит, инерционность) тела, тем дольше оно будет продолжать движение.

Циклическая частота свободных колебаний (такой же системы, но без трения) \omega_0 учитывает силу упругости в системе (например, жесткость пружины k):

    \[\omega_0 =\frac{k}{m} \]

Строго говоря, в случае затухающих колебаний нельзя говорить про период – время между повторяющимися движениями системы постоянно увеличивается. Однако если колебания затухают медленно, для них с достаточной точностью можно определить период Т:

    \[T=\frac{2\pi}{\sqrt{\omega_0^2 -\beta^2}} \]

Циклическая частота затухающих колебаний
Еще одна характеристика затухающих колебаний – циклическая частота:

    \[\omega =\sqrt{\omega_0^2 -\beta^2} \]

Время релаксации – это коэффициент, показывающий, за какое время амплитуда колебаний уменьшится в е раз:

    \[\tau = \frac{1}{\beta} \]

Отношение амплитуды изменяющейся величины в двух последовательных периодах называют декрементом затухания:

    \[D= \frac{A(t)}{A(t+T)} =e^{\beta T} \]

Эту же характеристику при расчетах часто представляют в виде логарифма:

    \[\lambda =lnD=\beta T\]

Добротность Q характеризует, насколько силы упругости системы превышают силы сопротивления среды, препятствуя диссипации энергии:

    \[Q= \frac{\sqrt{mk}}{r} \]