Закон сохранения энергии

    \[ \]

Закон сохранения энергии — один из наиболее важных законов, согласно которому физическая величина — энергия сохраняется в изолированной системе. Этому закону подчиняются все без исключения известные процессы в природе. В изолированной системе энергия может только превращаться из одной формы в другую, но ее количество остается постоянным.

    \[ \Large W=W_k+W_p=\frac{m\upsilon ^2}{2}+mgh\]

Для того, чтоб понять что же представляет из себя закон и откуда это получается возьмем тело массой m, которое уроним на Землю. В точке 1 тело у нас находится на высоте h и покоится (скорость равна 0). В точке 2 тело тело имеет некоторую скорость v и находится на расстоянии h-h1. В точке 3 тело имеет максимальную скорость и оно почти лежит на нашей Земле, то есть h=0

Закон сохранения энергии

В точке 1 тело имеет только потенциальную энергию, так как скорость тела равно 0,так что полная механическая энергия равна.

    \[\large W=mgh\]

После того как мы тело отпустили, оно стало падать. При падении потенциальная энергия тела уменьшается, так как уменьшается высота тела над Землей, а его кинетическая энергия увеличивается, так как увеличивается скорость тела. На участке 1-2 равном h1 потенциальная энергия будет равна

    \[\large \Delta W=mgh_1\]

А кинетическая энергия будет равная в тот момент

    \[( \upsilon_2\]

— скорость тела в точке 2):

    \[\large \Delta W=\frac{m\upsilon_2 ^2}{2} \]

Чем ближе тело становится к Земле, тем меньше его потенциальная энергия, но в тот же момент увеличивается скорость тела, а из-за этого и кинетическая энергия. То есть в точке 2 работает закон сохранения энергии: потенциальная энергия уменьшается, кинетическая растет.

В точке 3 (на поверхности Земли) потенциальная энергия равна нулю (так как h = 0), а кинетическая максимальна

    \[W=\frac{m\upsilon_3 ^2}{2}\]

(где v3 — скорость тела в момент падения на Землю). Так как

    \[\upsilon_2^2=2gh\]

, то кинетическая энергия в точке 3 будет равна Wk=mgh. Следовательно, в точке 3 полная энергия тела W3=mgh и равна потенциальной энергии на высоте h. Конечная формула закона сохранения механической энергии будет иметь вид:

    \[\Large W=W_k+W_p=\frac{m\upsilon ^2}{2}+mgh \]

Формула выражает закон сохранения энергии в замкнутой системе, в которой действуют только консервативные силы: полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию и обратно.

В Формуле мы использовали :

W — Полная энергия тела

    \[W_p\]

— Потенциальная энергия тела

    \[W_k\]

— Кинетическая энергия тела

m — Масса тела

g — Ускорение свободного падения

h — Высота на которой находится тело

\upsilon — Скорость тела