Ёмкость конденсатора

    \[ \]

Электрическая ёмкость — характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

    \[\Large C=\frac{q}{U}=\frac{q}{\varphi_1-\varphi _2} =\varepsilon \varepsilon _0\frac{S}{d}\]

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

    \[\Large C=\frac{q}{U}=\frac{q}{\varphi_1-\varphi _2}\]

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Так же есть:

Энергия конденсатора:

    \[\large W_p=\frac{U q}{2}=\frac{q^2}{2C}=\frac{CU^2}{2}\]

Ёмкость цилиндрического конденсатора :

    \[\large C=2\pi \varepsilon \varepsilon _0\frac{l}{ln(\frac{R_2}{R_1})}\]

Ёмкость плоского конденсатора :

    \[\large C=\varepsilon \varepsilon _0\frac{S}{d} = \frac{q}{U}\]

Емкость сферического конденсатора :

    \[\large  C=4\pi \varepsilon \varepsilon _0(\frac{1}{R_1} - \frac{1}{R_2})^{-1} \]

В формуле мы использовали :

C — Электрическая ёмкость (ёмкость конденсатора)

q — Заряд

U — Потенциал проводника (Напряжение)

    \[ \varphi\]

— Потенциал

    \[\varepsilon\]

— Относительная диэлектрическая проницаемость

    \[ \varepsilon _0 = 8.854185\times 10^{-12}\]

— Электрическая постоянная

S — Площадь одной обкладки

d — Расстояние между обкладками